Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
Commun Biol ; 7(1): 424, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589507

RESUMO

The cellular and molecular mechanisms governing sexual reproduction are conserved across eukaryotes. Nevertheless, hybridization can disrupt these mechanisms, leading to asexual reproduction, often accompanied by polyploidy. In this study, we investigate how ploidy level and ratio of parental genomes in hybrids affect their reproductive mode. We analyze the gametogenesis of sexual species and their diploid and triploid hybrids from the freshwater fish family Cobitidae, using newly developed cytogenetic markers. We find that diploid hybrid females possess oogonia and oocytes with original (diploid) and duplicated (tetraploid) ploidy. Diploid oocytes cannot progress beyond pachytene due to aberrant pairing. However, tetraploid oocytes, which emerge after premeiotic genome endoreplication, exhibit normal pairing and result in diploid gametes. Triploid hybrid females possess diploid, triploid, and haploid oogonia and oocytes. Triploid and haploid oocytes cannot progress beyond pachytene checkpoint due to aberrant chromosome pairing, while diploid oocytes have normal pairing in meiosis, resulting in haploid gametes. Diploid oocytes emerge after premeiotic elimination of a single-copied genome. Triploid hybrid males are sterile due to aberrant pairing and the failure of chromosomal segregation during meiotic divisions. Thus, changes in ploidy and genome dosage may lead to cyclical alteration of gametogenic pathways in hybrids.


Assuntos
Cipriniformes , Triploidia , Animais , Feminino , Masculino , Tetraploidia , Gametogênese , Haploidia , Cipriniformes/genética
2.
Front Endocrinol (Lausanne) ; 15: 1373623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596226

RESUMO

Hybridization and polyploid breeding are the main approaches used to obtain new aquaculture varieties. Allotriploid crucian carp (3n) with rapid growth performance was generated by mating red crucian carp (RCC) with allotetraploids (4n). Fish growth is controlled by the growth hormone (GH)/insulin-like growth factor (IGF) axis. In the present study, we examined the expression characteristics of GH/IGF axis genes in hybrids F1, 4n, 3n, RCC and common carp (CC). The results showed that GHRa, GHRb, IGF1, IGF2, and IGF-1Ra were highly expressed in 3n compared with RCC and CC, whereas IGF3 was undetectable in the liver in RCC, CC and 3n. GHRa and GHRb had low expression in the 4n group. In hybrid F1, GHRa expression was low, whereas GHRb was highly expressed compared to the levels in RCC and CC. Moreover, in hybrid F1, the expression of IGF3 was higher, and the expression of IGF1 and IGF2 was lower than that in the RCC and CC, whereas the expression of IGF-1Ra was similar to that in RCC and CC. For the IGFBP genes, IGFBP1 had higher expression in 3n compared than that in RCC and CC, while other IGFBP genes were not high expressed in 3n. Among the genes detected in this study, 11 genes were nonadditively expressed in 3n, with 5 genes in the transgressive upregulation model. We proposed that the 11 nonadditive expression of GH/IGF axis genes is related to growth heterosis in 3n. This evidence provides new insights into hybridization and polyploid breeding from the perspective of hormone regulation.


Assuntos
Carcinoma de Células Renais , Carpas , Hormônio do Crescimento Humano , Neoplasias Renais , Animais , Carpas/genética , Carpas/metabolismo , Triploidia , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Vigor Híbrido/genética , 60515 , Hormônio do Crescimento Humano/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Perfilação da Expressão Gênica
3.
Sci Rep ; 14(1): 6876, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519579

RESUMO

Hydatidiform moles are abnormal conceptuses. Many hydatidiform moles are diploid androgenetic, and of these, most are homozygous in all loci. Additionally, most hydatidiform moles are euploid. Using Single Nucleotide Polymorphism (SNP) array analysis, in two studies a higher frequency of aneuploidy was observed in diploid androgenetic heterozygous conceptuses, than in their homozygous counterparts. In the Danish Mole Project, we analyze conceptuses suspected to be hydatidiform moles due to the clinical presentation, using karyotyping and Short Tandem Repeat (STR) analysis. Among 278 diploid androgenetic conceptuses, 226 were homozygous in all loci and 52 (18.7%) were heterozygous in several loci. Among 142 triploid diandric conceptuses, 141 were heterozygous for paternally inherited alleles in several loci. Here we show that the frequencies of aneuploidy in diploid androgenetic heterozygous and triploid diandric heterozygous conceptuses were significantly higher than the frequency of aneuploidy in diploid androgenetic homozygous conceptuses. In diploid androgenetic and triploid diandric conceptuses that are heterozygous for paternally inherited alleles, the two paternally inherited sets of genomes originate in two spermatozoa. Each spermatozoon provides one pair of centrioles to the zygote. The presence of two pairs of centrioles may cause an increased risk of aneuploidy.


Assuntos
Mola Hidatiforme , Neoplasias Uterinas , Masculino , Gravidez , Feminino , Humanos , Diploide , Triploidia , Mola Hidatiforme/genética , Heterozigoto , Aneuploidia
4.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421617

RESUMO

Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.


Assuntos
Triploidia , Peixe-Zebra , Masculino , Animais , Feminino , Tetraploidia , Sementes , Poliploidia , Ploidias
5.
Funct Plant Biol ; 512024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310884

RESUMO

Tropospheric ozone (O3 ) is a significant abiotic stressor whose rising concentration negatively influences plant growth. Studies related to the differential response of Abelmoschus cytotypes to elevated O3 treatment are scarce and need further exploration to recognise the role of polyploidisation in stress tolerance. In this study, we analysed the changes in growth pattern, ultrastructure, physiology and foliar protein profile occurring under O3 stress in Abelmoschus moschatus (monoploid), Abelmoschus esculentus (diploid) and Abelmoschus caillei (triploid). Our findings showed that higher stomatal conductance in A. moschatus triggered higher O3 intake, causing damage to stomatal cells and photosynthetic pigments. Additionally, it caused a reduction in photosynthetic rates, leading to reduced plant growth, total biomass and economic yield. This O3 -induced toxicity was less in diploid and triploid cytotypes of Abelmoschus . Protein profiling by sodium dodecyl sulpate-polyacrylamide gel electrophoresis showed a significant decrease in the commonly found RuBisCO larger and smaller subunits. The decrease was more prominent in monoploid compared to diploid and triploid. This study provides crucial data for research that aim to enhance plant ability to withstand O3 induced oxidative stress. Our findings may help in developing a tolerant variety through plant breeding techniques, which will be economically more advantageous in reaching the objective of sustainable production at the high O3 levels projected under a climate change scenario.


Assuntos
Abelmoschus , Ozônio , Folhas de Planta , Ozônio/toxicidade , Ozônio/análise , Ozônio/metabolismo , Triploidia , Melhoramento Vegetal
6.
Front Endocrinol (Lausanne) ; 15: 1336679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410696

RESUMO

Introduction: In the Dongting water system, the Carassius auratus (Crucian carp) complex is characterized by the coexistence of diploid forms (2n=100, 2nCC) and polyploidy forms. The diploid (2nCC) and triploid C.auratus (3n=150, 3nCC) had the same fertility levels, reaching sexual maturity at one year. Methods: The nucleotide sequence, gene expression, methylation, and immunofluorescence of the gonadotropin releasing hormone 2(Gnrh2), Gonadotropin hormone beta(Gthß), and Gonadotropin-releasing hormone receptor(Gthr) genes pivotal genes of the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Results: The analysis results indicated that Gnrh2, follicle-stimulating hormone receptor(Fshr), and Lethal hybrid rescue(Lhr) genes increased the copy number and distinct structural differentiation in 3nCC compared to that in 2nCC. The transcript levels of HPG axis genes in 3nCC were higher than 2nCC (P<0.05), which could promote the production and secretion of sex steroid hormones conducive to the gonadal development of 3nCC. Meanwhile, the DNA methylation levels in the promoter regions of the HPG axis genes were lower in 3nCC than in 2nCC. These results suggested that methylation of the promoter region had a potential regulatory effect on gene expression after triploidization. Immunofluorescence showed that the localization of the Fshß, Lhß, and Fshr genes between 3nCC and 2nCC remained unchanged, ensuring the normal expression of these genes at the corresponding sites after triploidization. Discussion: Relevant research results provide cell and molecular biology evidence for normal reproductive activities such as gonad development and gamete maturation in triploid C. auratus, and contribute to further understanding of the genetic basis for fertility restoration in triploid C. auratus.


Assuntos
Carpas , Carpa Dourada , Animais , Carpa Dourada/genética , Triploidia , Eixo Hipotalâmico-Hipofisário-Gonadal , Ploidias , Hormônio Liberador de Gonadotropina/genética
7.
Mol Genet Genomic Med ; 12(2): e2402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400599

RESUMO

BACKGROUND: Recurrent miscarriage (RM) affects 1% to 5% of couples trying to conceive. Despite extensive clinical and laboratory testing, half of the RM cases remain unexplained. We report the genetic analysis of a couple with eight miscarriages and the search for their potential genetic etiology. METHODS: Short tandem repeat (STR) markers, single nucleotide polymorphic (SNP) microarray, and human DNA methylation microarray were used to analyze the genotypes of two miscarriages. Exomes sequencing was performed on DNA from the two partners and identified variants were validated by Sanger sequencing. RESULTS: STR marker genotyping demonstrated that the two available miscarriages are triploid digynic and resulted from the failure of Meiosis II. SNP microarray analysis revealed an additional Meiosis I abnormality that is the segregation of the two maternal homologous chromosomes in one triploid miscarriage. Whole-exome sequencing on DNA from the two partners identified candidate variants only in the female partner in two genes with roles in female reproduction, a missense in EIF4ENIF1 (OMIM 607445) and a stop gain in HORMAD2 (OMIM 618842). EIF4ENIF1 is a eukaryotic translation initiation factor 4E nuclear import factor required for the oocyte germinal vesicle breakdown, and HORMAD2 is part of the synaptonemal complex that was hypothesized to act as a checkpoint mechanism to eliminate oocytes with asynapsis during meiotic prophase I in mice. CONCLUSION: While both genes may contribute to the phenotype, the Meiosis I abnormalities in the conceptions favor the causal role of HORMAD2 in the etiology of RM in this couple. This report illustrates the importance of comprehensively analyzing the products of conception to guide the search for the genetic causation of RM.


Assuntos
Aborto Habitual , Meiose , Feminino , Humanos , Gravidez , Aborto Habitual/genética , Códon de Terminação , DNA , Meiose/genética , Triploidia , Masculino
8.
Sci Rep ; 14(1): 3792, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360913

RESUMO

In onion thrips Thrips tabaci, reduced sensitivity of the sodium channel caused by several sodium channel mutations have been correlated with pyrethroid resistance. For this study, using mitochondrial cytochrome c oxidase subunit I gene sequences, we examined the phylogenetic relation among a total of 52 thelytokous and arrhenotokous strains with different genotypes of the sodium channel mutations. Then, we used flow cytometry to estimate their ploidy. Results showed that the strains are divisible into three groups: diploid thelytoky, triploid thelytoky, and diploid arrhenotoky. Using 23 whole genome resequencing data obtained from 20 strains out of 52, we examined their genetic relation further using principal component analysis, admixture analysis, and a fixation index. Results showed that diploid and triploid thelytokous groups are further classifiable into two based on the sodium channel mutations harbored by the respective group members (strains). The greatest genetic divergence was observed between thelytokous and arrhenotokous groups with a pair of T929I and K1774N. Nevertheless, they shared a genomic region with virtually no polymorphism around the sodium channel gene loci, suggesting a hard selective sweep. Based on these findings, we discuss the evolutionary origin and distribution of the sodium channel mutations in T. tabaci.


Assuntos
Tisanópteros , Animais , Cebolas , Filogenia , Triploidia , Aminoácidos/metabolismo , Mutação , Canais de Sódio/metabolismo
9.
Fish Shellfish Immunol ; 146: 109426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316349

RESUMO

Glutathione S-transferase P1 (GSTP1), the most ubiquitous member of the GST superfamily, plays vital roles in the detoxification, antioxidant defense, and modulation of inflammatory responses. However, limited studies have been conducted on the function of GSTP1 in antiviral innate immunity. In this study, we have cloned the homolog of GSTP1 in triploid hybrid crucian carp (3nGSTP1) and investigated its regulatory role in the interferon signaling pathway. The open reading frame of 3nGSTP1 is composed of 627 nucleotides, encoding 209 amino acids. In response to spring viremia of carp virus (SVCV) infection, the mRNA level of 3nGSTP1 was up-regulated in the liver, kidney, and caudal fin cell lines (3 nF C) of triploid fish. The knockdown of 3nGSTP1 in 3 nF C improved host cell's antiviral capacity and attenuated SVCV replication. Additionally, overexpression of 3nGSTP1 inhibited the activation of IFN promoters induced by SVCV infection, poly (I:C) stimulation, or the RLR signaling factors. The co-immunoprecipitation assays further revealed that 3nGSTP1 interacts with 3nMAVS. In addition, 3nGSTP1 dose-dependently inhibited 3nMAVS-mediated antiviral activity and reduced 3nMAVS protein level. Mechanistically, 3nGSTP1 promoted ubiquitin-proteasome degradation of MAVS by promoting its K48-linked polyubiquitination. To conclude, our results indicate that GSTP1 acts as a novel inhibitor of MAVS, which negatively regulates the IFN signaling.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Triploidia , Transdução de Sinais , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/veterinária , Imunidade Inata/genética , Poli I-C/farmacologia , Antivirais
10.
BMC Genom Data ; 25(1): 23, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408920

RESUMO

BACKGROUND: Indotyphlops braminus, the only known triploid parthenogenetic snake, is a compelling species for revealing the mechanism of polyploid emergence in vertebrates. METHODS: In this study, we applied PacBio isoform sequencing technology to generate the first full-length transcriptome of I. braminus, aiming to improve the understanding of the molecular characteristics of this species. RESULTS: A total of 51,849 nonredundant full-length transcript assemblies (with an N50 length of 2980 bp) from I. braminus were generated and fully annotated using various gene function databases. Our analysis provides preliminary evidence supporting a recent genome duplication event in I. braminus. Phylogenetic analysis indicated that the divergence of I. braminus subgenomes occurred approximately 11.5 ~ 15 million years ago (Mya). The full-length transcript resource generated as part of this research will facilitate transcriptome analysis and genomic evolution studies in the future.


Assuntos
Transcriptoma , Triploidia , Animais , Filogenia , Transcriptoma/genética , Isoformas de Proteínas/genética , Serpentes/genética
11.
Biosci Biotechnol Biochem ; 88(4): 412-419, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412471

RESUMO

The regeneration of shoots from endosperm tissue is a highly effective method to obtain triploid plants. In this study, we elucidated the establishment of an in vitro regeneration system from endosperm culture for the production of Passiflora edulis "Mantianxing." The highest callus induction rate (83.33%) was obtained on the media supplemented with 1.0 mg/L TDZ. Meanwhile, the MS medium containing 1.0 mg/L 6-BA and 0.4 mg/L IBA gave the optimum 75% shoot bud induction. Chromosome analysis revealed that the chromosomal count of P. edulis "Mantianxing" regenerated from endosperm tissues was 27 (2n = 3x = 27), which indicated that shoots regenerated from endosperm tissues were triploids. Triploid P. edulis had more drought resistance than diploid plants. Our study provided a method for breeding of passion fruit by means of a stable and reproducible regeneration system from endosperm culture, leading to the generation of triploid plants.


Assuntos
Passiflora , Triploidia , Brotos de Planta , Endosperma , Melhoramento Vegetal , Regeneração/genética
12.
J Gynecol Obstet Hum Reprod ; 53(4): 102745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367703

RESUMO

BACKGROUND: Early morphologic ultrasound, generally carried out in case of atypical first trimester serum markers (PAPP-A and/or free hCGß <0.30 MoM), has not been re-evaluated since the possibility of performing a cell-free fetal DNA analysis in this indication. Our objective was to evaluate the usefulness of early morphological ultrasound in case of atypical profile of serum markers performed in association with Non-Invasive Prenatal Testing (NIPT). METHODS: This was a single-center retrospective study in a tertiary maternity. Between January 2017 and December 2021, women with an atypical first trimester serum markers and low/intermediate risk for trisomy 21 (<1/50) were included. The clinical data, results of first trimester serum markers, NIPT, early morphological ultrasound and subsequent ultrasounds and other investigations (amniocentesis, pregnancy outcomes) were analyzed. RESULTS: After exclusion of women with high-risk of trisomy 21 and lost to follow-up, 163 women were included. In 72 % of cases (117/163), women had a low risk of trisomy 21, and 39 % (59/163) had an early morphological ultrasound. Early morphological ultrasound was useful to detect severe IUGR leading to the suspicion of triploidy (3/163, 1.8 %). In all other situations, it did not allow earlier management. After analysis of the 3 triploidy cases, a collapsed profile for both serum markers was demonstrated (<0.25 MoM). CONCLUSIONS: Systematic early morphological ultrasound in case of an atypical serum marker profile seems useless considering the performance of NIPT. An ultrasound restricted to women with both markers below 0.25 MoM would allow the early detection of triploidy.


Assuntos
Ácidos Nucleicos Livres , Síndrome de Down , Gravidez , Feminino , Humanos , Primeiro Trimestre da Gravidez , Síndrome de Down/diagnóstico , Estudos Retrospectivos , Diagnóstico Pré-Natal/métodos , Triploidia , Biomarcadores , Resultado da Gravidez
13.
Plant Physiol Biochem ; 208: 108441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377887

RESUMO

The economically adaptable mulberry (Morus alba L.) has a long history of grafting in China, yet the physiological mechanisms and advantages in drought tolerance remain unexplored. In our study, we investigated the responses of self-rooted 2X (diploid), 3X (triploid), and 4X (tetraploid) plants, as well as polyploid plants grafted onto diploid seedling rootstocks (2X/2X, 3X/2X, and 4X/2X) under drought stress. We found that self-rooted diploid plants exhibited the most severe phenotypic damage, lowest water retention, photosynthetic capacity, and the least effective osmotic stress adjustment compared to tetraploid and triploid plants. However, grafted diploid and triploid plants showed effective mitigation of drought-induced damage, with higher relative water content and improved soil water retention. Grafted plants also improved the photosystem response to drought stress through elevated photosynthetic potential, closed stomatal aperture, and faster recovery of chlorophyll biosynthesis in the leaves. Additionally, grafted plants altered osmotic protective compound levels, including starch, soluble sugar, and proline content, thereby enhancing drought resistance. Absolute quantification PCR indicated that the expression levels of proline synthesis-related genes in grafted plants were not influenced after drought stress, whereas they were significantly increased in self-rooted plants. Consequently, our findings support that self-rooted triploid and tetraploid mulberries exhibited superior drought resistance compared to diploid plants. Moreover, grafting onto seedling rootstocks enhanced tolerance against drought stress in diploid and triploid mulberry, but not in tetraploid. Our study provides valuable insights for a comprehensive analysis of physiological effects in response to drought stress between stem-roots and seedling rootstocks.


Assuntos
Morus , Plântula , Plântula/metabolismo , Morus/genética , Tetraploidia , Secas , Triploidia , Água/fisiologia , Prolina/metabolismo
14.
Sci China Life Sci ; 67(3): 449-459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198030

RESUMO

Unisexual reproduction is generally relevant to polyploidy, and unisexual vertebrates are often considered an evolutionary "dead end" due to the accumulation of deleterious mutations and absence of genetic diversity. However, some unisexual polyploids have developed strategies to avoid genomic decay, and thus provide ideal models to unveil unexplored evolutionary mechanisms, from the reproductive success to clonal diversity creation. This article reviews the evolutionary mechanisms for overcoming meiotic barrier and generating genetic diversity in unisexual vertebrates, and summarizes recent research advancements in the polyploid Carassius complex. Gynogenetic gibel carp (Carassius gibelio) is a unique amphitriploid that has undergone a recurrent autotriploidy and has overcome the bottleneck of triploid sterility via gynogenesis. Recently, an efficient strategy in which ploidy changes, including from amphitriploid to amphitetraploid, then from amphitetraploid to novel amphitriploid, drive unisexual-sexual-unisexual reproduction transition and clonal diversity has been revealed. Based on this new discovery, multigenomic reconstruction biotechnology has been used to breed a novel strain with superior growth and stronger disease resistance. Moreover, a unique reproduction mode that combines both abilities of ameiotic oogenesis and sperm-egg fusion, termed as ameio-fusiongensis, has been discovered, and it provides an efficient approach to synthesize sterile allopolyploids. In order to avoid ecological risks upon escape and protect the sustainable property rights of the aquaculture seed industry, a controllable fertility biotechnology approach for precise breeding is being developed by integrating sterile allopolyploid synthesis and gene-editing techniques. This review provides novel insights into the origin and evolution of unisexual vertebrates and into the attempts being made to exploit new breeding biotechnologies in aquaculture.


Assuntos
Cyprinidae , Sementes , Masculino , Animais , Melhoramento Vegetal , Triploidia , Reprodução/genética , Cyprinidae/genética
15.
Mol Ecol ; 33(5): e17264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38205506

RESUMO

Elements transferred from a mother to her eggs may strongly influence the phenotype of her offspring. Such maternal effects depend on the genotype of the mother, and while multiple ploidy levels occur naturally in some vertebrate species, studies evaluating the impact of maternal ploidy on offspring are scarce. This paper aimed to test whether maternal ploidy is responsible for the two reproductive phenotypes observed in the triploid fish Chrosomus eos × eos-neogaeus. Indeed, these hybrids have two different maternal origins (diploid or triploid) and display two reproductive phenotypes, ameiotic and meiotic hybridogenesis, resulting in diploid and haploid eggs, respectively. To this end, we first conducted a genomic survey to identify epigenetic variations in triploid larvae reared under common garden conditions, concordantly with their maternal origin. The results revealed that the polymorphic epigenetic loci of the larvae clustered into two highly distinct groups consistently with the ploidy of their mother. Diagnostic epigenetic loci were then tested in triploid adult females whose reproductive pathways were already known, to infer their own maternal origin. Altogether, the results suggest that triploid larvae from diploid and triploid mothers will develop the ameiotic and meiotic hybridogenesis pathway, respectively. This confirms that the development of a given reproductive pathway in triploid females results from the ploidy of their mother. Overall, this study supports a strong maternal effect, introducing maternal ploidy and reproductive pathways as additional cause and effect of maternal effects, respectively.


Assuntos
Cyprinidae , Triploidia , Feminino , Animais , Hibridização Genética , Diploide , Haploidia , Larva/genética
16.
New Phytol ; 241(6): 2506-2522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258389

RESUMO

Although polyploid plants have lower stomatal density than their diploid counterparts, the molecular mechanisms underlying this difference remain elusive. Here, we constructed a network based on the triploid poplar transcriptome data and triple-gene mutual interaction algorithm and found that PpnMYC2 was related to stomatal development-related genes PpnEPF2, PpnEPFL4, and PpnEPFL9. The interactions between PpnMYC2 and PagJAZs were experimentally validated. PpnMYC2-overexpressing poplar and Arabidopsis thaliana had reduced stomatal density. Poplar overexpressing PpnMYC2 had higher water use efficiency and drought resistance. RNA-sequencing data of poplars overexpressing PpnMYC2 showed that PpnMYC2 promotes the expression of stomatal density inhibitors PagEPF2 and PagEPFL4 and inhibits the expression of the stomatal density-positive regulator PagEPFL9. Yeast one-hybrid system, electrophoretic mobility shift assay, ChIP-qPCR, and dual-luciferase assay were employed to substantiate that PpnMYC2 directly regulated PagEPF2, PagEPFL4, and PagEPFL9. PpnMYC2, PpnEPF2, and PpnEPFL4 were significantly upregulated, whereas PpnEPFL9 was downregulated during stomatal formation in triploid poplar. Our results are of great significance for revealing the regulation mechanism of plant stomatal occurrence and polyploid stomatal density, as well as reducing stomatal density and improving plant water use efficiency by overexpressing MYC2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Populus , Água/metabolismo , Triploidia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Secas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
17.
Mar Biotechnol (NY) ; 26(1): 125-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217752

RESUMO

The fecundity of triploid female Crassostrea gigas exhibited significant variation and was lower compared to diploid individuals. Previous studies categorized mature stage triploid female C. gigas into two groups: female α, characterized by a high number of oocytes, and female ß, displaying few or no oocytes. To investigate the molecular mechanisms underlying irregular oogenesis and fecundity differences in triploid C. gigas, we performed a comparative analysis of gonad transcriptomes at different stages of gonadal development, including female α, female ß, and diploids. During early oogenesis, functional enrichment analysis between female diploids and putative female ß triploids revealed differently expressed genes (DEGs) in the ribosome and ribosome biogenesis pathways. Expression levels of DEGs in these pathways were significantly decreased in the putative female ß triploid, suggesting a potential role of reduced ribosome levels in obstructing triploid oogenesis. Moreover, to identify regulatory pathways in gonad development, female oysters at the early and mature stages were compared. The DNA repair and recombination proteins pathways were enriched in female diploids and female α triploids but absent in female ß triploids. Overall, we propose that decreased ribosome biogenesis in female triploids hinders the differentiation of germ stem cells, leading to the formation of a large number of abnormal germ cells and ultimately resulting in reduced fecundity. The variation in fertility among triploids appeared to be related to the degree of DNA damage repair during female gonad development. This study offers valuable insights into the oogenesis process in female triploid C. gigas.


Assuntos
Crassostrea , Triploidia , Animais , Feminino , Humanos , Crassostrea/genética , Transcriptoma , Oogênese/genética , Perfilação da Expressão Gênica , Ribossomos/genética
18.
Lab Med ; 55(1): 103-105, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184333

RESUMO

Triploidy is a genetic occurrence in which the chromosome count is 3n = 69 with a double (2n) chromosomal contribution to the conceptus from one parent. Such pregnancies are usually nonviable and are estimated to account for approximately 1% of recognized conceptions and 10% of recognized miscarriages. Majority opinion is that fetal losses due to triploidies are caused by the presence of 2 copies of paternal chromosomes. In this study, we present a digynic monoandric triploid miscarriage from a 32-year-old G7P1051 at approximately 13 weeks gestation, in which 2 copies of the maternal chromosomes are present in the fetus. This unusual phenomenon is supported by nonmolar placental histology, chromosomal microarray, and short tandem repeat assays, with the latter 2 being discussed in detail. Furthermore, this study includes discussion of recurrent miscarriage, recurrent triploidy, and long-term clinical follow-up of the patient.


Assuntos
Aborto Habitual , Triploidia , Humanos , Gravidez , Feminino , Adulto , Placenta , Aborto Habitual/genética
19.
Hum Cell ; 37(1): 258-270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37889437

RESUMO

Dual blockade of HER2 and PD-1/PD-L1 is the most promising regimen for HER2-positive patients with gastric cancer (GC); PD-L1 combined positive score, rather than HER2 status, indicates potential benefit. Circulating tumor cells (CTCs) and circulating endothelial cells (CECs) derived from the tumor microenvironment provide platforms for the dynamic evaluation of PD-L1 expression. Whether PD-L1 positive CTCs/CECs (PD-L1+CTCs/CECs) can serve as biomarkers for evaluating the efficacy of combination therapy remains unknown. Therefore, this study investigated PD-L1 expression and heterogeneous karyotypic features of CTCs/CECs and their involvement in the clinical response to treatment in 72 patients with advanced GC by applying a pre-established surface molecule-independent subtraction enrichment (SE)-iFISH strategy. In the captured PD-L1 positive cells, there were 42.80% and 57.20% of CTCs and CECs, respectively. PD-L1+ CTCs were pre-therapeutically detected in 0% (0/11) of HER2-negative patients and 14.75% (9/61) of HER2-positive patients. The presence of baseline PD-L1+CTCs was relevant to inferior prognosis (mPFS: 14.40 months vs 5.00 months, P = 0.065); post-treatment PD-L1+ CECs were associated with longer irPFS (immunotherapeutic-related PFS) (mPFS: 15.57 months vs 6.73 months, P = 0.053). Further dynamic karyotype-based profiling of PD-L1+ CTCs/CECs indicated that multiploidy and triploidy were the dominant subtypes of baseline PD-L1+ CTCs, and that triploidy was specifically associated with therapeutic resistance. Intratherapeutically detected multiploid PD-L1+ CECs demonstrated a superior clinical response; triploidy and tetraploidy contributed to acquired resistance. The karyotypic features of PD-L1+CTCs/CECs should be dynamically profiled in patients with GC treated with anti-HER2 plus anti-PD-1 therapy. Triploid-PD-L1+ CTCs and multiploid-PD-L1+ CECs are potential indicators of therapeutic response.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Células Endoteliais/metabolismo , Triploidia , Antígeno B7-H1/genética , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral
20.
Acta Obstet Gynecol Scand ; 103(2): 351-359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37986093

RESUMO

INTRODUCTION: In this register-based study of pregnancies in Denmark, we assessed the associations between maternal age and the risk of fetal aneuploidies (trisomy 21, trisomy 18, trisomy 13, triploidy, monosomy X and other sex chromosome aberrations). Additionally, we aimed to disentangle the maternal age-related effect on fetal aneuploidies by cases with translocation trisomies and mosaicisms. MATERIAL AND METHODS: We followed a nationwide cohort of 542 375 singleton-pregnant women attending first trimester screening in Denmark between 2008 and 2017 until delivery, miscarriage or termination of pregnancy. We used six maternal age categories and retrieved information on genetically confirmed aneuploidies of the fetus and infant from the national cytogenetic register. RESULTS: We confirmed the known associations between advanced maternal age and higher risk of trisomy 21, 18, 13 and other sex chromosome aberrations, especially in women aged ≥35 years, whereas we found no age-related associations with triploidy or monosomy X. Cases with translocation trisomies and mosaicisms did not influence the overall reported association between maternal age and aneuploidies. CONCLUSION: This study provides insight into the accurate risk of fetal aneuploidies that pregnant women of advanced ages encounter.


Assuntos
Transtornos Cromossômicos , Síndrome de Down , Síndrome de Turner , Feminino , Gravidez , Humanos , Idade Materna , Síndrome de Down/epidemiologia , Síndrome de Down/genética , Síndrome de Down/diagnóstico , Trissomia/genética , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/epidemiologia , Transtornos Cromossômicos/genética , Diagnóstico Pré-Natal , Estudos de Coortes , Triploidia , Aneuploidia , Aberrações dos Cromossomos Sexuais , Síndrome da Trissomía do Cromossomo 18/epidemiologia , Feto , Mosaicismo , Dinamarca/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...